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SUMMARY 

A complete boundary integral formulation for steady compressible inviscid flows governed by non-linear 
equations is established by using the specific mass flux as a dependent variable. Thus, the dimensionality of 
the problem to be solved is reduced by one and the computational mesh to be generated is needed only on 
the boundary of the domain. It is shown that the boundary integral formulation developed in this paper is 
equivalent to  the results of distributions of the fundamental solutions of the Laplacian operator equation 
with a different order along the boundaries of the domain. Hence, we have succeeded in establishing the 
fundamental-solution method for compressible inviscid flows governed by non-linear equations. 
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INTRODUCTION 

The boundary integral representations for the solution of linear equations in fluid mechanics have 
been used widely. The boundary integral formulation reduces the dimensionality of problem to be 
solved by one and the computational mesh to be generated is needed only on the boundaries of 
the domain. Thus, the required computer storage and computing time will be reduced greatly. At 
the present time, the boundary integral formulation for steady compressible inviscid flows 
governed by non-linear equations has not yet been well developed; none of existing methods, 
except Reference 1, avoid the appearance of domain integrals in their integral representations. 
The boundary integral formulation in Rcference 1 is based on the analytical continuation into the 
complex plane and, thus, it is suitable only for two-dimensional flows. In this paper a complete 
boundary integral formulation for two- and three-dimensional steady compressible non-linear 
potential equation by using the specific mass flux pV as a dependent variable is established and 
the dimensionality of the problem to be solved is reduced exactly by one. 

THEORETICAL BASIS 

The governing equation for steady compressible inviscid flows can be written as 

V . p q = O  and V x p q = q .  
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If we consider that the flow field is isentropic, we have 

where q, p, p ,  C, and Ma represent total velocity, density, pressure, pressure coefficient and the 
Mach number of the flow field, respectively; k is the specific heat ratio of fluid and of is the curl of 
pq. The subscript x denotes the corresponding free-stream value. Obviously, equation (1) is 
non-linear for variable q. Let 

PQ = PV + P3L q;C> (4) 
where ~ J V  is the perturbational specific mass flux vector for p 5 q 5 .  

Substituting equation (4) into equation (l) ,  one obtains the governing equation for pV as 
follows: 

v . p v = o ,  v x p V = o , .  (5 )  

pV=O at the far field pq=pK,qx ,  (64  

p V * n =  - p r q c c * n  on the body surface pq*n=O, (6b) 

The boundary conditions are 

where n is the unit outnormal vector of the boundary. For lifting flow, a trailing-edge condition 
must also be added. It can be seen from equations (5) and (6 )  that these equations are formally 
linear for variable pV. Since pV is the perturbational mass flux, no jumping phenomenon for pV 
will occur even in the flow field embedded with normal shock wave. Hence, there is no special 
difficulty for transonic flows. Following the general expressions of Green’s formula2 for vector 
field the integral representation for equation (5) can be written as 

7,PV (r = s, vo G x Po x povo 1 dQ 0 + IB ( povo * n - p ovo x n x 1 vo G dBo > (7) 

where B is the boundary of domain Q, r(x, y, z )  is a position vector, the subscript ‘0’ indicates 
a variable of a differentiation or an integration in the ro((, q, <) space, T =  1 if r is an interior point 
in R and T=1/2 if r is on a smooth boundary, G is the fundamental solution of Laplace’s 
equation. G=(1/27c) In R for two-dimensional flows and G =  1/47cR for three-dimensional flows, 
R is the distance between r and ro. In order to establish the complete boundary integral 
representation for equation (7), we must think of a way to eliminate the domain integral in 
equation (7). We note that the domain integral in equation (7) can be rewritten as follows by using 
vector analysis 

s, VO G x ( VO x POVO~ dQ 0 = c vo x (G vo x PoVo) - G vo x P o  x Y0Vo)I dRo s, 
=J* P o  X(GV0 x~oVo) -G[ I~o(~o~ .po~o) -V~( / IoVo) I}  dQo 

=I* P o  x (GV” x poVo)+ GVi3PoVo)l dQo 
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According to Green's formula, the domain integral of the second term on the right-hand side of 
equation (8) can be rewritten as 

Since G is the fundamental solution of Laplace's equation, V2G=G(r-ro), 6 is the Dirac-delta 
function. Thus, the second term on the right-hand side of equation (9) is equal to TpV(r). 
Substituting equations (8) and (9) into equation (7), we have (for convenience the subscript '0' is 
omitted in the subsequent analysis) 

jB (G - pV ") d B  + jB n x (GV x pV) dB + [(pV * n)- pV x n x ] V G dB =O. (10) 
an 

Once we have known either the boundary value of pV or dpV,dn of the steady compressible 
inviscid flow, we may obtain the other one from equation (10). We note that the domain integral 
on the right-hand side of equation (8) is an integration of the Laplacian operator, with weighting 
function G. It can be easily transformed into a series of boundary integrals by means of existing 
methods."-" In order to do this, we first introduce two new functions A. =V2(pV)  and V2G1 = G. 
Thus, the domain integral on the right-hand side of equation (8) can be rewritten as 

Gl(V2Ao)dQ. (11) 

Similarly, the domain integral on the right-hand side of equation (11) can also be rewritten as 

dn 
lQ G,V2Ao d Q = j B  (A, --G2 dG2 

Fn 

where A, =V2A0,  V2G2 = GI. The procedure can be generalized by introducing two sequences of 
functions defined by the following recurrence formulae 

Aj+I=V2Aj,  V Z G j + , = G j ,  j =0 ,  1,2  ,..., (12) 

where Go = G. Thus, the domain integral on the right-hand side of equation (8) can be expressed as 
the summation of infinite boundary integrals 

Theoretically, on the boundaries, Aj will finally decrease to zero as j increase to co because pV is 
finite everywhere on the boundaries and can be approximated by a polynomial. 

In order to carry out the special solution of Gj+l governed by equation (12), we write the 
Laplacian operator in terms of a cylindrical (for two-dimensional cases) or spherical (for 
three-dimensional cases) co-ordinate system. For the special solution G1, for example, since G is 
a function of R, the main part of the Laplacian operator that will give the result related to a 
function of R only will be 

or 
1 2  

R 2  dR 
-_  (R~;C, ,ER)  

for two-dimensional flow, 

for three-dimensional flow. 
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Hence, the special solution G ,  can be obtained from the following ordinary differential equation 
by direct integration: 

Two-dimensional problems 

G1=- -(R’lnR-R2) . 
271 “ 4 1 

Three-dimensional problems 

1 d  1 
R2 dR 

Similarly, we can calculate the special solutions of G2, G 3 ,  . . . 

Two-dimensional problems 

following recurrence relationships: 

1 
271 

G.  = - R’j(Cj In R - Dj),  

where 

Cj+l=Cj/4(j+1)2, Dj+1=[Cj(j+1)-1+Dj]/4(j+1)2, 

Three-dimensional problems 

Gj = R(2j - ‘)/471(2j)! 

Finally, we may sum up the 

Notice that formulae (14) and (15) introduce factorials ( j +  1)’ for two-dimensional flows and (2 j ) !  
for three-dimensional flows into the denominators of the coefficients and, hence, guarantee the 
rapid convergence of the right-hand side of equation (13). Substituting equation (13) into equation 
(8) and then into equation (7), we obtain the complete boundary integral formulation for steady 
compressible inviscid flows for pV as follows: 

n x (G V x pV) d B + 
u: 

TpV(r) = Aj ?GI + /?n - Gj+ 8Aj/3n) dB s. j = O  il, 
+ jB (pV .n-pV x n x )VC dB. (1 6) 

The first two terms on the right-hand side of equation (16) represent the non-linear effects due to 
compressibility. Since the integrals in equation (1 5) are all boundary integrals, they can be 
evaluated numerically and iteratively by subdividing the boundary B into boundary elements, as 
usual in the boundary element method. 

NUMERICAL EXAMPLES AND CONCLUDING REMARKS 

Numerical examples for compressible inviscid flows about aerofoils and wings at different Mach 
number and different angles of attack have been calculated by using the present method. It is 
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shown that good surface pressure coefficient C ,  results are obtained even if j is less than 2. 
Figures 1-4 present a few of these results and show the general trend of the comparison between 
the present method and other numerical methods. From equation (12) we have Aj+lGj =6(r -ro). 
Therefore, Gj  is the fundamental solution of Laplacian operator equation with order ( j +  1). 

,' - parssent 
,I 

* Finitedifference 

Figure 2. NACA 0012 aerofoil: Mu,=0406, a=O" 
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Present 
* finite difference 

Figure 3. Constant chord 30" swept wing, aspect ratio 4, biconvex aerofoil: .Ma, =0.908, z=O" 

Figure 4. M6 wing: Ma, =0.84, E =  3", 20% semi-span 
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Substituting equation (10) into equation (16), we obtain 

The integrand in the first term of the right-hand side of equation (17) is the distribution of 
first-order fundamental solutions (sources with strength l?pV/an and doublets with strength pV) 
along boundary B and the integrands in the other terms are the distributions of higher-order 
fundamental solutions. Hence, equation (17) is really the fundamental-solution distributions for 
steady compressible inviscid flows governed by non-linear potential equation. 

Thus, we have succeeded in establishing the fundamental-solution method for compressible 
inviscid flows governed by non-linear equations. 
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